Steroid regulated programmed cell death during Drosophila metamorphosis.

نویسندگان

  • C Jiang
  • E H Baehrecke
  • C S Thummel
چکیده

During insect metamorphosis, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) direct the destruction of obsolete larval tissues and their replacement by tissues and structures that form the adult fly. We show here that larval midgut and salivary gland histolysis are stage-specific steroid-triggered programmed cell death responses. Dying larval midgut and salivary gland cell nuclei become permeable to the vital dye acridine orange and their DNA undergoes fragmentation, indicative of apoptosis. Furthermore, the histolysis of these tissues can be inhibited by ectopic expression of the baculovirus anti-apoptotic protein p35, implicating a role for caspases in the death response. Coordinate stage-specific induction of the Drosophila death genes reaper (rpr) and head involution defective (hid) immediately precedes the destruction of the larval midgut and salivary gland. In addition, the diap2 anti-cell death gene is repressed in larval salivary glands as rpr and hid are induced, suggesting that the death of this tissue is under both positive and negative regulation. Finally, diap2 is repressed by ecdysone in cultured salivary glands under the same conditions that induce rpr expression and trigger programmed cell death. These studies indicate that ecdysone directs the death of larval tissues via the precise stage- and tissue-specific regulation of key death effector genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecdysone-mediated programmed cell death in Drosophila.

During Drosophila development, the steroid hormone ecdysone plays a key role in the transition from embryo into larva and then into pupa. It is during larval-pupal metamorphosis that extensive programmed cell death occurs to remove large obsolete larval tissues. During this transition, ecdysone pulses control the expression of specific transcription factors which drive the expression of key gen...

متن کامل

A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila.

The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been fu...

متن کامل

A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis.

The steroid hormone ecdysone signals the stage-specific programmed cell death of the larval salivary glands during Drosophila metamorphosis. This response is preceded by an ecdysone-triggered switch in gene expression in which the diap2 death inhibitor is repressed and the reaper (rpr) and head involution defective (hid) death activators are induced. Here we show that rpr is induced directly by...

متن کامل

Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex

The steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only kno...

متن کامل

STEROID-TRIGGERED, CELL-AUTONOMOUS PROGRAMMED CELL DEATH OF IDENTIFIED DROSOPHILA MOTONEURONS DURING METAMORPHOSIS by ARIWINBUSH A DISSERTATION

Title: "Steroid-triggered, cell-autonomous programmed cell death of identified Drosophila motoneurons during metamorphosis" This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Biology by: Original approval signatures are on file with the Graduate School and the University of Oregon Libraries. Progra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 22  شماره 

صفحات  -

تاریخ انتشار 1997